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Small-angle X-ray scattering patterns (SAXS) are widely used to study

polymers. Quantitative treatment of the intensity curves is often realized to

obtain the long period and the linear crystallinity of semicrystalline

homopolymers presenting a lamellar morphology, mainly using the correlation

function. But even in the one-dimensional case, block copolymer systems exhibit

more complicated morphologies that cannot be fully interpreted by this

standard method. In this work, a model has been developed based on a previous

treatment applicable to systems characterized by two different densities. Two

additional densities have been considered to model four phase systems that

can occur with block copolymers (e.g. two different crystalline domains and

amorphous parts). The scattering intensity function was derived as a function of

various parameters like the number of stacked lamellar units, the mean values

and distributions of widths, and the electron densities.

1. Introduction

Small-angle X-ray scattering patterns (SAXS) are widely used

to probe nanoscale structures (1±100 nm) that occur in poly-

mers. This subject has been recently reviewed by Chu & Hsiao

(2001). Among the numerous studies, quantitative treatment

of the intensity curves is often realized to obtain the long

period and the linear crystallinity of semicrystalline homo-

polymers presenting a lamellar one-dimensional morphology,

mainly using the correlation function (Strobl & Schneider,

1980).

Even in the liquid state, block copolymers exhibit complex

nanostructures owing to the microphase separation of the

blocks at the mesoscopic scale (see Hamley, 1998). Theoretical

studies of the equilibrium morphologies are based on the

minimization of the free energy for particular geometries,

taking into account the block composition in the case of

diblock copolymers. Some of the possible structures have

cubic, hexagonal or lamellar symmetries. Using SAXS, it has

been possible to identify the microdomain morphology of

diblock copolymer systems from the relative positions of the

scattering maxima. For lamellar phases of liquid diblock

copolymers, the SAXS intensity curves can be easily treated

like semicrystalline homopolymers, since there are essentially

two phases of different electron densities. The correlation

functions allow the derivation of the long period together with

the lengths of the two components. For some more compli-

cated systems, the number of potential phases is increased and

their ®ne structure can be more complex, i.e. by formulating

block copolymers with a third block, or when the copolymer

contains a crystallizable block. Even in the one-dimensional

case, such systems exhibit morphologies that cannot be fully

interpreted by a standard method. For example, this is the case

of an alternating (multi)block copolymer made of poly-

(caprolactone) and poly(hexamethylene terephthalate) blocks

(PCL±PHT), both being crystallizable (LefeÁvre et al., 2001).

Combining differential scanning calorimetry (DSC), wide-

angle X-ray diffraction (WAXD) and SAXS, they show that

PCL and PHT blocks crystallize to form an alternate lamellar

structure embedded in an amorphous phase. This corresponds

to the following four phases in succession: crystalline PCL ±

amorphous copolymer ± crystalline PHT ± amorphous co-

polymer. A similar behaviour has been observed in a study on

poly(ethylene)±poly(ethylethylene) diblock copolymers (PE±

PEE) (Ryan et al., 1995), where the four successive phases

indicated in the periodic lamellar morphology are: amorphous

PE ± crystalline PE ± amorphous PE ± amorphous PEE. In

both studies, conclusions have been drawn using peak posi-

tions of the SAXS intensity and correlation function curves.

Even if misinterpretations are unlikely, a theoretical treatment

could be very useful to model the experimental results. Since a

one-dimensional two-phase model cannot be used to model

these examples, there is a clear need for a more appropriate

model which will take into account the periodic succession of

four phases that was experimentally proven in these works on

block copolymers.

In this work, we present such a model based on the general

treatment given by Hosemann (see Hosemann & Bagchi,

1962), initially applied to homopolymers characterized by two

different densities (amorphous and crystalline). We have



considered two additional densities to model four phase

systems that can occur with block copolymers (i.e. the

different crystalline domains and amorphous parts that occur

in the two mentioned examples). The scattering intensity

function was derived as a function of various parameters like

the number of stacked lamellar units, the mean values and

distributions of phase widths, and the electron densities.

2. The model

Consider a one-dimensional system consisting of N layers

numbered j, each made of four successive rods denoted P, Q,

R and S. These layers are arranged along an axis u perpen-

dicular to the incident beam S0, and the electron densities �p,

�q, �r and �s are assumed constant in each zone. For simplicity,

density differences between the P, Q, R rods and the fourth S

rod are used, the density of the latter (�s) is thus supposed to

be zero. The rod P having length Pj is so placed that its left end

is located at the point uj and is followed on the right by the

rods of length Qj, Rj and Sj. A schematic view of this model is

presented in Fig. 1. These lengths ¯uctuate across the different

layers according to general distribution functions HP�Pj�,
HQ�Qj�, HR�Rj� and HS�Sj�, respectively. We assume also that

there is no correlation between any of these length. These

assumptions are suf®cient to determine the total scattering

intensity as a function of the reciprocal coordinate s.

3. Mathematical development

Following the previous assumptions, the amplitude of the

scattered radiation is given by

a�s� � RuN�1

u1

��u� exp�ÿ2�isu� du: �1�

Since �s � 0, the amplitude of the N layers is expressed as 3N

terms:

a�s� �PN
j�1

RPj

0

�p exp�ÿ2�is�uj � p�� dp

� RQj

0

�q exp�ÿ2�is�uj � Pj � q�� dq

� RRj

0

�r exp�ÿ2�is�uj � Pj �Qj � r�� dr: �2�

Integrals on p, q and r can easily be solved:

a�s� � �1=2�is�PN
j�1

exp�ÿ2�isuj�
�
�p�1ÿ exp�ÿ2�isPj��

� �q exp�ÿ2�isPj��1ÿ exp�ÿ2�isQj��
� �r exp�ÿ2�is�Pj �Qj���1ÿ exp�ÿ2�isRj��

	
: �3�

The resulting intensity will therefore be

I�s� � a�s�a��s�

� �1=�2�s�2�PN
j�1

PN
k�1

exp�ÿ2�is�uj ÿ uk��

� ��p�1ÿ exp�ÿ2�isPj�� � �q exp�ÿ2�isPj�
� �1ÿ exp�ÿ2�isQj�� � �r exp�ÿ2�is�Pj �Qj��
� �1ÿ exp�ÿ2�isRj��

	�
�p�1ÿ exp�2�isPk��

� �q exp�2�isPk��1ÿ exp�2�isQk��
� �r exp�2�is�Pk �Qk���1ÿ exp�2�isRk��

	
: �4�

This double summation can be evaluated by considering the

terms in groups: the N diagonal ones with j � k, the 2�N ÿ 1�
terms with j � kÿ 1 and j � k� 1, the 2�N ÿ 2� terms with

j � kÿ 2 and j � k� 2, . . . .

3.1. Diagonal terms

The terms for which j � k can be reorganized as a

summation of 6 terms:

�1=�2�s�2�PN
j�1

�2
p�1ÿ exp�ÿ2�isPj���1ÿ exp�2�isPj��

� �2
q�1ÿ exp�ÿ2�isQj���1ÿ exp�2�isQj��

� �2
r �1ÿ exp�ÿ2�isRj���1ÿ exp�2�isRj��

� �p�q

��exp�2�isPj� ÿ 1��1ÿ exp�2�isQj��
� �exp�ÿ2�isPj� ÿ 1��1ÿ exp�ÿ2�isQj��

	
� �p�r

ÿfexp�2�is�Pj �Qj�� ÿ exp�2�isQj�g
� �1ÿ exp�2�isRj�� � fexp�ÿ2�is�Pj �Qj��
ÿ exp�ÿ2�isQj�g�1ÿ exp�ÿ2�isRj��

�� �q�r

�
exp�2�isQj�

� �1ÿ exp�ÿ2�isQj���1ÿ exp�2�isRj�� � exp�ÿ2�isQj�
� �1ÿ exp�2�isQj���1ÿ exp�ÿ2�isRj��

	
: �5�

The possible values Pj, Qj and Rj are given statistically by the

distributions HP�Pj�, HQ�Qj� and HR�Rj�. All values from 0 to

1 must be considered for the evaluation of I. Since H are

de®ned as distributions, we have:
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Figure 1
Schematic description of the successive layers in the model.
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R1
0

HP dPj � 1

R1
0

HQ dQj � 1

R1
0

HR dRj � 1:

�6�

The following integrals, which are in fact Fourier transforms of

the distribution, are introduced:

FP �
R1
0

HP exp�ÿ2�isPj� dPj

FQ �
R1
0

HQ exp�ÿ2�isQj� dQj

FR �
R1
0

HR exp�ÿ2�isRj� dRj:

�7�

All the N diagonal terms are identical, and (5) becomes

�N=�2�s�2���2
p�2ÿ FP ÿ F�P� � �2

q�2ÿ FQ ÿ F�Q�
� �2

R�2ÿ FR ÿ F�R� � �p�q�F�P � F�Q ÿ F�PF�Q ÿ 1� FP � FQ

ÿ FPFQ ÿ 1� � �p�r�F�Q�F�P � F�R ÿ F�PF�R ÿ 1�
� FQ�FP � FR ÿ FPFR ÿ 1�� � �q�r�F�Q � F�R ÿ F�QF�R ÿ 1

� FQ � FR ÿ FQFR ÿ 1�	: �8�

The superscript * denotes the complex conjugates of the

corresponding functions. Sums of complex conjugate pairs

Z� � Z can be substituted by 2Re{Z} (Re{} denotes the real

part), which yields

�2N=�2�s�2���2
pRef1ÿ FPg � �2

qRef1ÿ FQg � �2
r Ref1ÿ FRg

� �p�qRef1� FPFQ ÿ FP ÿ FQg
� �p�rRef�1� FPFR ÿ FP ÿ FR�FQg
� �q�rRef1� FQFR ÿ FQ ÿ FRg�: �9�

3.2. Terms with j = k ÿ 1 and j = k + 1

Let us ®rstly consider terms where j � kÿ 1 or k � j� 1.

In this case, we have

exp�ÿ2�is�uj ÿ uk�� � exp�2�is�Pj �Qj � Rj � Sj��

and the corresponding sum is

�1=�2�s�2�PNÿ1

j�1

exp�2�is�Pj �Qj � Rj � Sj��

�
�
�2

p�1ÿ exp�ÿ2�isPj���1ÿ exp�ÿ2�isPj�1��
� �2

q exp�ÿ2�isPj��1ÿ exp�ÿ2�isQj�� exp�2�isPj�1�
� �1ÿ exp�ÿ2�isQj�1�� � �2

r exp�ÿ2�is�Pj �Qj��

� �1ÿ exp�ÿ2�isRj�� exp�2�is�Pj�1 �Qj�1��
� �1ÿ exp�ÿ2�isRj�1�� � �p�q

��1ÿ exp�ÿ2�isPj��
� exp�2�isPj�1��1ÿ exp�2�isQj�1�� � �1ÿ exp�2�isPj�1��
� exp�ÿ2�isPj��1ÿ exp�ÿ2�isQj��

	
� �p�r

��1ÿ exp�ÿ2�isPj�� exp�2�is�Pj�1 �Qj�1��
� �1ÿ exp�2�isRj�1�� � �1ÿ exp�2�isPj�1��
� exp�ÿ2�is�Pj �Qj���1ÿ exp�ÿ2�isRj��

	
� �q�r

��1ÿ exp�ÿ2�isPj���1ÿ exp�ÿ2�isQj��
� exp�2�is�Pj�1 �Qj�1���1ÿ exp�2�isRj�1��
� exp�2�isPj�1��1ÿ exp�2�isQj�1�� exp�ÿ2�is�Pj �Qj��
� �1ÿ exp�ÿ2�isRj��

	�
: �10�

As in the previous section, we have to consider the following

integrals and de®nitions:R1
0

HS dSj � 1 and FS �
R1
0

HS exp�ÿ2�isSj� dSj �11�

and (10) becomes

��N ÿ 1�=�2�s�2��ÿ �2
pF�QF�RF�S �1ÿ F�P�2 ÿ �2

qF�PF�RF�S �1ÿ F�Q�2
ÿ �2

RF�PF�QF�S �1ÿ F�R�2 ÿ �p�qF�RF�S �1ÿ F�P��1ÿ F�Q�
� �F�PF�Q � 1� ÿ �p�rF

�
S �1ÿ F�P��1ÿ F�R��F�PF�Q

2F�R � 1�
ÿ �q�rF

�
PF�S �1ÿ F�R��1ÿ F�Q��F�QF�R � 1��: �12�

The contribution of the j � k� 1 terms is the complex

conjugate of this last expression.

3.3. Other off-diagonal terms

The next group of terms is such that j � kÿ 2 or j � k� 2.

This yields ®rstly to an equation analogous to (10) beginning

with

�1=�2�s�2� PNÿ2

j�1

exp�2�is�Pj �Qj � Rj � Sj � Pj�1 �Qj�1 � Rj�1

� Sj�1��
�
�2

p�1ÿ exp�ÿ2�isPj���1ÿ exp�ÿ2�isPj�2�� . . . :

�13�

These terms can also be rewritten as

��N ÿ 2�=�2�s�2��ÿ �2
pF�QF�RF�S �F�PF�QF�RF�S ��1ÿ F�P�2 ÿ �2

q . . . :

�14�

Comparing this to (12), we observe the presence of the

constant factor �F�PF�QF�RF�S �. All subsequent off-diagonal

terms such that j � kÿ r are similar, with factors of the

general form �F�PF�QF�RF�S �r. We have also complex-conjugate

contributions from terms such that j � k� r.



3.4. Final expression of the intensity

All the terms are added to give

I�s� � �2N=�2�s�2���2
pRef1ÿ FPg � �2

qRef1ÿ FQg
� �2

r Ref1ÿ FRg � �p�qRef1� FPFQ ÿ FP ÿ FQg
� �p�rRef�1� FPFR ÿ FP ÿ FR�FQg
� �q�rRef1� FQFR ÿ FQ ÿ FRg

�
ÿ 2Re

nh PNÿ1

r�0

�FPFQFRFS�r�N ÿ rÿ 1�
i

� ��2
pFQFRFS�1ÿ FP�2 � �2

qFPFRFS�1ÿ FQ�2
� �2

r FPFQFS�1ÿ FR�2 � �p�qFRFS�1ÿ FP��1ÿ FQ�
� �1� FPFQ� � �p�rFS�1ÿ FP��1ÿ FR��1� FPF2

QFR�
� �q�rFPFS�1ÿ FR��1ÿ FQ��1� FQFR�

�o
: �15�

As the values of the distribution functions are always less than

unity, the following summation rules converge and can be

applied (q represents any product of distribution functions):

XNÿ1

r�0

qr � 1ÿ qN

1ÿ q
�16�

XNÿ1

r�0

�r� 1�qr � d

dq

�
q
PNÿ1

r�0

qr
�
� 1ÿ qN

�1ÿ q�2 ÿ N
qN

1ÿ q
�17�

XNÿ1

r�0

qr�N ÿ rÿ 1� � N
1ÿ qN

1ÿ q
ÿ 1ÿ qN

�1ÿ q�2 � N
qN

1ÿ q

� N

1ÿ q
ÿ 1ÿ qN

�1ÿ q�2 : �18�

The result is presented as the sum of two intensity terms:

I � IB � IC, where

IB�s� � �N=2�2s2�Re
��1ÿ FPFQFRFS�ÿ1

�
�2

p�1ÿ FP�
� �1ÿ FQFRFS� � �2

q�1ÿ FQ��1ÿ FPFRFS�
� �2

r �1ÿ FR��1ÿ FPFQFS�
ÿ �p�q�1ÿ FP��1ÿ FQ��1� FRFS�
ÿ �p�r�1ÿ FP��1ÿ FR��FQ � FS�
ÿ �q�r�1ÿ FQ��1ÿ FR��1� FPFS�

�	 �19�

and

IC�s� �
1

2�2s2
Re
n 1ÿ �FPFQFRFS�N
�1ÿ FPFQFRFS�2

�
�2

pFQFRFS�1ÿ FP�2

� �2
qFPFRFS�1ÿ FQ�2 � �2

r FPFQFS�1ÿ FR�2
� �p�qFRFS�1ÿ FP��1ÿ FQ��1� FPFQ�
� �p�rFS�1ÿ FP��1ÿ FR��1� FPF2

QFR�
� �q�rFPFS�1ÿ FQ��1ÿ FR��1� FQFR�

�o
: �20�

IB is directly proportional to N whereas IC gives the zero-

order scatter which can be neglected if N is suf®ciently large

and if the distribution functions are suf®ciently broad (a

condition generaly ful®lled with polymers). From these

expressions, it is possible to obtain as a particular case the

intensity terms for the analogous two-phase �Y;Z� classical

model (Hosemann & Bagchi, 1962), using the following

assumptions:

�q � �z � 0

�p � �r � �y � �
FP � FR � FY

FQ � FS � FZ:

�21�

Then,
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Figure 3
Simulated SAXS pro®les of a PCL±PHT copolymer. �p � 0:6 (crystalline
PCL), �q � �s � 0 (amorphous PCL±PHT), �r � 1 (crystalline PHT). (a)
P = 4.8 nm, Q = 10.2 nm, R = 7 nm, S = 10.2 nm. (b) Same parameters as
(a) except Q = S = 10.6 nm. (c) Fusion of PCL zones: same parameters as
(b), except �p � 0:

Figure 2
Experimental SAXS pro®les of a PCL±PHT copolymer taken at three
temperatures (263, 303 and 342 K).
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IB�s� �
2N�2

2�2s2
Re
n �1ÿ FY ��1ÿ FZ�

1ÿ FY FZ

o
�22�

IC�s� �
�2

2�2s2
Re
n

FZ

� 1ÿ FY

1ÿ FY FZ

�2

�1ÿ �FY FZ�2N�
o
: �23�

4. Applications

For samples of semicrystalline block copolymers, the main

term of interest in the scattered intensity is IB. Therefore, (19)

has been evaluated for the two particular cases mentioned in

the Introduction. In this equation, densities explicitly appear

whereas the thicknesses and their distributions H are intro-

duced via (7) and (11), which allow computation of the

functions F.

4.1. PCL±PHT alternating block copolymer

The melting of this copolymer was studied by SAXS using

synchrotron radiation (LefeÁvre et al., 2001). Intensity curves

taken at three different temperatures (263, 303 and 342 K) are

shown in Fig. 2. It has been concluded from wide-angle X-ray

diffraction, differential calorimetry, SAXS and chemical

considerations that the system consists of crystalline lamellae

of PCL and PHT embedded in amorphous parts. Only the

temperature (and consequently the densities) are changed

between the ®rst two measurements whereas the PCL crys-

talline phase has been melted at 342 K. The experimental

SAXS curves show that the area of the second peak is

markedly increased at 303 K and that the melting of PCL gives

the almost entire disappearance of this second peak. Fig. 3

shows that the same observations can be made on the simu-

lated pro®les which have been computed using parameters

suggested from the mentioned study: density values of 1.17 for

crystalline PCL, 1.20 for crystalline PHT and 1.12 for the

amorphous copolymer. The change between 263 and 303 K

has been obtained by changing the amorphous thickness

Q � S from 10.2 to 10.6 nm, a change compatible with the

important thermal expansion of the amorphous parts. Simu-

lation of the curve at 342 K has been obtained by superseding

the density of PCL by zero, which corresponds to a crystal-

to-amorphous transition. These simulations agree with the

morphological evolution experimentally observed.

4.2. PE±PEE block copolymer

Ryan et al. (1995) have studied the morphology of PE±PEE

diblocks quenched from lamellar microphase-separated

phases below the PE crystallization temperature. In such

conditions, the lamellar morphology can be interpreted as the

repeated succession of the four following phases: amorphous

PE, crystalline PE, amorphous PE and amorphous PEE. Fig. 4

shows the SAXS intensity pro®le, characterized by four peaks

of decreasing intensity. The authors have used the scattering

density correlation function to assess the four domain thick-

nesses. From the positions of peak maxima and minima (at 4.7,

15.3, 22.3 and 32.4 nm), they propose the values for the

thicknesses of the four phases mentioned before: 5.3, 4.7, 5.3

and 17.1 nm. These ®ndings have been reinforced with the

mathematical model developed in the present paper. Indeed,

it has been possible to simulate a SAXS pro®le similar to the

experimental one, using very close thicknesses with differ-

ences less than 5% (P = 5.2, Q = 4.9, R = 5.2, S = 17.8 nm) (see

Fig. 5).

5. Conclusions

The main topic of this paper was to develop a one-dimensional

mathematical model to model four phase systems that can

occur with block copolymers. This model has been applied to

two selected experimental studies. It has been shown that the

complex SAXS patterns observed in such block copolymer

systems can be simulated on a theoretical basis, using only a

Figure 4
Experimental SAXS pro®le of a PE±PEE copolymer exhibiting a
lamellar morphology.

Figure 5
Simulated SAXS pro®le of a PE±PEE copolymer. P = 5.2 nm (amorphous
PE), Q = 4.9 nm (crystalline PE), R = 5.2 nm (amorphous PE), S =
17.8 nm (amorphous PEE), �p � �r � 0:005, �q � 1.



few parameters having direct physical meaning to describe the

morphologies: the mean thicknesses, their distributions and

the densities. Starting from this study and combining it with

non-linear least-squares numerical methods, it would be

possible to analyse scattering data in order to extract

morphological parameters, but this approach is beyond the

scope of the present paper.

The author thanks Dr P. Damman for fruitful discussions.
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